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A one-dimensional wave equation is derived for water-wave propagations in a long 
channel with cormgated boundaries. The amplitude and the wavelength of boundary 
undulations are assumed to be smaller than and in the same order of magnitude as 
the incident wavelength, respectively. When the Bragg reflection condition (i.e. the 
wavenumber of the boundary undulations is twice that of the incident wavenumber) 
is nearly satisfied, significant wave reflection could occur. Coupled equations for 
transmitted and reflected wave fields are derived for the near resonant coupling. The 
detuning mechanism is attributed to the slight deviation in the wavenumber of the 
corrugated boundaries from the Bragg wavenumber. Analytical solutions are 
obtained for the cases where the boundary undulations are within a finite region. The 
application of the present theory to the design of a harbour resonator is discussed. 

1. Introduction 
The interactions between water waves and a periodic seabed have been investigated 

by many researchers (e.g. Davies 1982; Davies & Heathershaw 1984; Mitra & 
Greenberg 1984; Mei 1985; Kirby 1986; Dalrymple & Kirby 1986). The most 
interesting feature of the interaction phenomena is that reflected waves can be 
resonated by the rippled seabed, if the wavelength of seabed undulations is one-half 
of that of the incident waves. This kind of resonant reflection is commonly known 
as Bragg reflection in crystallography (e,g. Yariv & Yeh 1984). In the case of a finite 
patch of periodic sandbars on a constant mean depth, Mei (1985) obtained analytical 
solutions near the resonance condition. In Mei’s analysis, the wavelength of the 
sandbars is fixed and the uniform incident wave is detuned from the Bragg resonance 
condition by a small wavenumber K. Kirby (1986) derived a general two-dimen- 
sional wave equation which included the effects of slowly varying depth and rapidly 
varying, small-amplitude depth undulations. Numerical solutions were then obtained 
for one-dimensional problems concerning a finite patch of parallel periodic sandbars. 
In Kirby’s numerical solutions, the wavenumber of the incident-wave train is fixed 
and the wavenumber of the sandbars is shifted from the resonance condition. 

In  this paper, we first derive a one-dimensional wave equation describing wave 
propagations in a long channel with corrugated boundaries. The boundary undula- 
tions are caused by either a rippled topography or the irregularities in channel banks. 
We investigate the reflected and transmitted waves near the resonant condition. The 
detuning mechanism in our analysis is caused by the small deviation of the 
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wavenumber of the corrugated boundaries +A/? from that of the Bragg reflection 
condition. Analytical solutions are obtained for the general case. In the case of 
constant channel width, owing to different detuning mechanisms, our solutions differ 
slightly from Mei’s results when the resonance condition is not satisfied. 

As a practical application, the phenomenon of the resonant reflection by a periodic 
undulation in channel width is examined as an alternative design of a harbour 
resonator (James 1970). The conventional harbour resonator consists of a rectangular 
branch canal on a narrow main channel. Quarter-wavelength resonance requires that 
the length of the branch canal is roughly one-quarter of the incident wavelength. In 
the present design, however, the amplitude of channel bank undulations is small in 
comparison with the wavelength. On the other hand, for the present design to be 
effective, the length of the undulation region must be in the order of magnitude of 
the channel width. 

In the following sections, we derive first the one-dimensional wave equation. The 
coupled equations for transmitted and reflected wave fields are given and discussed 
in $3. In  $4, analytical solutions are obtained for the case where the corrugated 
boundaries are confined in a finite region. A special application of the present theory 
to the design of a harbour resonator is presented in $5. 

2. Theoretical derivation of quasi-one-dimensional wave equations 
The depth-integrated two-dimensional wave equation, describing the propagation 

of a wave train over small-amplitude topographical undulations, was recently derived 
by Kirby (1986). Consider the x-axis as the primary wave propagation direction and 
the total still-water depth, z = -h(z) ,  as the sum of a constant and a rapid 
undulation L(z), i.e. 

The amplitude of the topographical undulations is small in comparison with the 
typical wavelength, kL 6 1.  The lengthscale of the topographical variation is, 
however, in the same order of magnitude as the incident wave wavelength, 

h(x) = E + L ( z ) .  (2.1) 

If the leading-order velocity potential is expressed as 

with w2 = gk tanh kE, (2.3) 

where o is the wave frequency and k the wavenumber, the wave equation can be 
written as (Kirby 1986) : 

where C = w/k, and C, = dw/dk are the phase velocity and the group velocity 
respectively. The gradient operator in (2.4) is a two-dimensional horizontal operator, 
i.e. V = (a/&, a/ay). We remark here that in the original mild-slope equation derived 
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by Kirby (1986) the mean depth is a slowly varying function; i.e. O(Vh/kh) < 1, 
and the coefficient g/cosh2 kh is outside of the divergent operator. 

Consider wave propagations in a long channel. Let x be the longitudinal axis and 
b(x) the width of the channel. If y = al(x) and a2(x) describe the configuration of the 
channel banks, then b ( z )  = a2--a,. The zero-flux boundary condition along the 

We now integrate (2.4) from y = a, to a2 and apply Leibniz's rule to get 

If the channel width is small compared with the characteristic wavelength, kb < 1 ,  
the lateral variation in the wave field becomes less important. Employing the 
boundary conditions (2.5) along the channel banks and assuming that the variation 
of qi in the y-direction can be ignored, we reduce the above equation to 

where 

Equations (2.6) and (2.7) represent the quasi-one-dimensional wave equation in a 
long channel with width b(x). In the case where the wave field is periodic in time, 
i.e. 

q5 = C D ( X ) ~ - ~ ~ ~ ,  (2.8) 

the wave equation, (2.6), can be simplified as 

The wave transformation is caused by the variation of channel width b and the 
topographical undulations n. 

Introducing the transformation 
i$ = q5Ai (2.10) 

into the general wave equation, (2.6), we obtain 

We now assume that the channel width can also be decomposed into two parts: 5 
is a slowly varying function of x, but 6 represents fast undulations in channel width. 
The amplitude of the width undulations is also assumed to be small, i.e. 

1 d6 
0 -- z O ( k 6 )  x O(k6) < 1 ;  O (  ) x O(1). (k6 z) @dz (2.12) 
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Substituting b = 6+6 into (2.11) and neglecting terms smaller than O(k6), we obtain 

and 

(2.13) 

(2.15) 

The effects of water depth and channel width undulations are separated. For the wave 
field which is periodic-in time, i.e. 

6 = [ e-iot, 

(2.13) reduces to the one-dimensional Helmholtz equation 

d2[ - a+ k2[ = 0, 

(2.16) 

(2.17) 

with the variable refraction index E given in (2.14). 

3. Resonant reflection 
Due to the undulations in water depth and channel width, significant wave 

reflection could occur under the resonance condition (Davies & Heathershaw 1984). 
The total wave field consists of incident waves and reflected waves; i.e. 

= tY+(x, t )  ei(kz-wt)+lY-(x, 2 t )  ePi(kZht) +C.C., (3.1) 

where lp+ and Y-, representing the envelopes of incident and reflected wave 
amplitudes, respectively, are assumed to be slowly varying functions in both x and 
t .  Thus, we approximate the first derivatives of g with respect to x and t to be 

Substituting (3.1), (3.2) and (3.3) into (2.13), we obtain two equations for lp+ and 
Iu- . 

where - 
k2 
k2 

SA g -+--- d2n I d26} (3.6) A = - - 1 = -  
{CC, cosh2 k%+2kaCCg cosh2 kE dxe 2k2b dx2 ' 

Since both n and 6 are periodic in x, we can expand A as a Fourier series 

A = E d,exp[-imAx], m = + l ,  f 2  ,..., 
m+o 

where A_, is the complex conjugate of A,. 

(3.7) 
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Substitution of (3.7) into (3.4) and (3.5) leads to 

Equations (3.8) and (3.9) constitute a set of coupled differential equations for the 
incident and reflected wave fields. The right-hand-side terms in (3.8) and (3.9) contain 
the fast oscillating terms and a slowly varying term where m satisfies the condition 

mA = T 2 k  (3.10) 

for (3.8) and (3.9) respectively. Equation (3.10) is also known as the Bragg reflection 
condition. Since the incident and reflected wave envelopes, Ip+ and Y-,  are slowly 
varying functions of x, in the integration of (3.8) and (3.9) the only significant 
contribution comes from the term (nearly) satisfying the Bragg reflection condition. 
Thus, near the resonant coupling, (3.8) and (3.9) can be simplified to 

(3.11) 

(3.12) 

where AP = 2k-mA 4 1, (3.13) 

and +AD is the detuning wavenumber of the corrugated boundaries. The coupling 
between incident and reflected waves is strong as long as the Bragg condition is nearly 
satisfied and the coupling coefficient A , ,  is not negligible. The coupling coefficient 
A , ,  can be specifically defined as follows. If the topographical and channel width 
undulations are expressed as 

n = t I: Dm e-imAz, (3.14a) 
m+o 

we obtain, from (3.6) and (3.7), that 

A = -  S*m -[k2-t(mA)2]+---(mA)2. Bm 
2CCg k2 cosh2 kh k2b 

(3.14b) 

(3.15) 

Near the resonant coupling, the coupling coefficient becomes 

Note that the coupling coefficient is, in general, a function of the detuning wave- 
number $AP. We remark here that if the channel width is uniform, B, = 0, and if 
AD = 0, (3.11) and (3.12) reduce to those derived by Mei (1985). 
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4. Analytical solutions in a channel with a finite patch of corrugated 
boundaries 

In this section we consider the problem where the channel width and topographical 
undulations are confined within a finite distance, 0 < x < L. The uniform incident 
wave train, arriving from x - - 00, has a wavenumber k ,  and a constant amplitude. 
Thus 

Y+ = Yo, x < o ,  (4.1) 

and Yo is a prescribed constant. Equation (4.1) satisfies the governing equation (3.1 1) 
in the incidence region x < 0. We impose that there be no reflected waves in the region 

(4.2) 
x > L;  i.e. 

Y-=O, x >  L. 

The governing equations for x < 0 and x > L become 

- 0,  x < 0, -=o, x > L ;  -- 
dY+ dY- 
dx dx (4.3) 

Over the undulations region, 0 < x < L,  the governing equations are given in (3.11) 
and (3.12). Continuity of Y* at x = 0 and L gives four conditions. The solution in 
all three regions can be readily found. 

Over the undulations region, 0 < x < L, the incident and reflected wave fields are 

(4.4) 
expressed as 

Y+ = YoT(x), 0 < x < L, 

Y- = YoR(x), 0 < x < L, (4.5) 

where 
5 cosh 5(L - x) - i(+A/3) sinh s(L - x) 

5 cosh 5L - i(+A/3) sinh 5L 
T(x) = e-i({AbB)z 

and the wavenumber 5 is the solution of 

s2 = $t21Am12- (+A/3)2. (4.8) 

The wavenumber 5 could be real or imaginary depending on the sign of the right-hand 
side of (4.8). If 5 is imaginary, the hyperbolic functions in (4.6) and (4.7) become 
trigonometric functions. The cut-off frequency a,, is defined as the frequency 
corresponding to 5 = 0. On the incident side, x < 0, the reflected waves are 

Y- = YoR(0) ,  x < 0. (4.9) 

The reflection coefficient IR(0)l can be found from (4.7). Thus 

I. i k A ,  sinh 5L 
I R ( 0 ) l  = I 2[5  cosh 5L - i(+A/3) sinh BL] 

(4.10) 

On the transmission side, x > L, the transmitted waves are 

Y+ = Y,,T(L), x > L, (4.11) 

where the transmission coefficient IT(L)I can be obtained from (4.6) as 

5 

IT(')' = I 5 cosh 5L - i(+A/?) sinh 5L 
(4.12) 
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From (4.10) and (4.12), the wave energy is conserved; i.e. IR(0)12+IT(L)12 = 1. The 
reflected wave intensity over the undulated region is 

(4.13) 

where R ( x )  and A are given in (4.7) and (2.7) respectively. Since A is a function of 
6 and 6, the reflected wave intensity responds to the undulations. 

In the case of perfect tuning, A@ = 0, the transmitted and reflected wave fields 
become 

cash [ k k l A , l ( L - ~ ) ]  
T ( x )  = 

cosh [iklA,lL] ’ 

4Bm -+-. A ,  = g D m  
2CCg cosh2 kh  b 

(4.14) 

(4.15) 

(4.16) 

The maximum reflection coefficient is given as 

R,,, = IB(0)l = tanh [+klA,lL] (4.17) 

The reflection coefficient could become zero when A ,  vanishes. From (3.14) and 
(4.16), A ,  will become zero only when D ,  and B, have opposite signs; the 
topographical and channel width undulations must be 180’ out of phase. 

In Mei’s (1985) analysis, the uniform incident wave train is detuned by a small 
wavenumber K with an associated detuning frequency 0. His solutions can be 
converted into our solutions with a substitution :A@ = K. Slight differences between 
Mei’s and the present solution, however, appear in the coupling coefficient, (3.16), 
as well as in the determination of the cut-off frequency. For the coupling coefficient, 
our solution (3.16), contains terms in the order of magnitude of +A#?. For the case 
where B, = 0, the cut-off frequency 0, can be obtained by setting (4.8) zero to get 
SZ, = +kCgA, = gk2D,/40 cosh2 k%, which was also obtained by Mei (1985). We 
reiterate here that in the general situation, AS =+ 0, the coupling coefficient A, is a 
function of A#?. The cut-off frequency is quite different from a,. To illustrate this, 
we rewrite (4.8) in the following form: 

r2>, = [ 1 - 8 @) + 24 @y] - ($!y (2)’. (4.18) 

In figure 1 we plot (sCg/L2,)z us. (A/3/2k)2 (kCg/Q,)z for different values of Q,/kC,. In 
Mei’s (1985) analysis A/3 does not appear in A,, the equation equivalent to (4.18) 
becomes 

(4.19) 

The cut-off frequency is obtained when (4.19) is zero. 
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FIQURE 1 .  The sign of the square of the wavenumber s as a function of AB and a,,. 

FIQURE 2. Definition sketch of a harbour resonator. 

5. A harbour resonator 
In this section we examine the possible utilization of the concept of Bragg reflection 

for the design of a harbour resonator. The goal of a harbour resonator is to reflect 
incident waves from the harbour entrance channel so that the wave motion in the 
harbour will be small. 
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Consider a simple case where the water depth in the channel is a constant; i.e. 
k = 0, and the channel width is described as (see figure 2 )  

where 
nn (n+ 1)n 
A 
( n + l ) n  < < ( n + 2 ) n  

(-17 A A '  

A '  
1, - < x <  

fC.1 = 

By using the Fourier series fort(%), the channel width can be written as 

(0, m = even, 

The corresponding coupling coefficient is 

The wavenumber s is simply defined as 

( 5 . 3 ~ )  

(5.3b) 

(5.3c) 

(5.3d) 

The transmitted and reflected wave fields can be deduced from (4.6) and (4.7). Near 
the resonance the reflection coefficient IR(0)l can be approximated as 

2k(b, -bJ sinh 5L 
IR(0)l = mn[5 cosh SL - i(+A/3) sinh sL] (b, + b,) * 

The maximum reflection coefficient can be found from (4.17). Thus 

R,,, = tenh [ 2k(bo- 
L]  . mmo + bl)  

Therefore, the reflection coefficient approaches one when the parameter 

(5.7) 

becomes very large, which can be achieved if the undulation region is long in 
comparison with the mean channel width 6. On the other hand, the reflection 
coefficient becomes rather small when K is small. This could happen when 
O(L/z) < 0 ( 1 )  or m = 2 k / A  is large (i.e. the wavelength of the boundary undulations 
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t- 

- 20 - 10 0 10 20 

:w 
FIQURE 3. Reflection coefficient for K = 1 .O. 

is much longer than the incident wavelength). In the case where ( b o - b J /  
h = O.l(h = 2n/k), m = 3, and L/8 = 15, the parameter K is 1.0. The corresponding 
reflection coefficient IR(0)l is presented in figure 3. The maximum reflection is 0.762. 
Because the amplitude of the bank undulations is small compared to the incident 
wavelength, the present approach is an attractive alternative to the conventional 
quarter-wavelength harbour resonator. 

6. Concluding remarks 
A general one-dimensional wave equation describing wave propagation in a long 

channel with corrugated boundaries is derived. The boundary variations consist of 
slow varying and fast varying, but small-amplitude components. The sources for the 
boundary undulations include the topographical changes (e.g. sandbars) and the 
irregularities in the channel width. Analytical solutions are obtained for the trans- 
mitted and reflected waves over a finite length of the undulation region near the 
Bragg reflection condition. The concept of the resonance reflection is suggested for 
use as an alternative design for a harbour resonator. Experimental verification of the 
present theory is underway. 

The present theory is limited to small-amplitude waves in an intermediate water 
depth. It can, however, be extended to the shallow-water limit and include nonlinear 
effects. 

This research was supported by the New York Sea Grant Institute. The discussions 
with Dr Chiang C. Mei and Mr Sung B. Yoon have been very fruitful. 
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